Contribution Au Développement D’un Glucomètre Non Invasif.
2022
Thèse de Doctorat
Génie Eléctrique Et Eléctronique

Université Frères Mentouri - Constantine 1

B
Boumali, Sara
B
Benhabiles, Mohamed-Taoufik

Résumé: In this thesis, we propose a new methodology for the non-invasive detection of blood glucose using an electronic nose based on WO3, SnO2 and ZnO transducers. This approach is an indirect detection of blood glucose by measuring acetone vapors present in human breath. In order to validate this approach, it was necessary to highlight the feasibility and the relevance of this detection methodology by the elaboration of three types of thin films based on WO3, SnO2 and ZnO. During the work carried out, the sensitive layers of WO3, SnO2 and ZnO were deposited by RF magnetrons puttering on silicon substrates with a thickness of 50 nm for each layer. After the deposition, the obtained transducers were tested in the presence of acetone and ethanol. The experimental results prove that our transducers are able to detect concentrations of 1 ppm of acetone and ethanol, under the assumption that ethanol and water vapor are considered as interfering. These transducers can therefore form a sensor array as a central element in the design of a non-invasive glucose sensing principle. Indeed, the use of a sensor array instead of a single sensor during the measurements allows increasing the sensitivity and selectivity. The responses from the different sensors constituting an electronic nose are used to create a database. Then, a multivariate analysis was performed to identify the gases and to estimate their concentrations. First, an extraction of six different features of the signal has been applied in order to obtain the most useful information of the signal, subsequently the ReliefF algorithm is used for the selection of the most significant features. For gas classification, a support vector machine (SVM) based method using a linear kernel function is employed, then to estimate the concentration of acetone and ethanol, a new method based on the combination of the best features of three sensors is proposed to create a least squares SVM (LS-SVM) based prediction model. Classification accuracy of 100% is achieved with a root mean square error for acetone and ethanol concentration estimation of 0.2236 and 0.6639 respectively. From these results, we have demonstrated that the proposed method is a promising approach for non-invasive detection of blood glucose level in human blood.

Mots-clès:

electronique
procédés et dispositifs pour biomédical
détection non invasive
glucose
acétone
nez électronique
couche mince
sno2
zno
wo3
classification
estimation
svm
non-invasive detection
acetone
electronic nose
thin film
الكشف غير الجراح
الجلوكوز
الأسيتون
الأنف الإلكتروني
الأغشية الرقيقة
ثلاثي أكسيد التنغستن
ثاني أكسيد القصدير
أكسيد الزنك
التصنيف
التقدير
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft