Analyse De Données À Haut Débit Issues De Puces À Adn
Résumé: Dans le cadre de données d’expression génétique, nous nous intéressons aux méthodes qui permettent d’identifier les gènes significativement différentiellement exprimés entre deux situations biologiques. Nous allons comparer une méthode classique d’analyse par tests d’hypothèses à des méthodes d’analyse différentielle par régression régularisée. La difficulté de ce genre de jeu de données est la profusion de variables (les gènes) pour assez peu d’individus (les profils d’expression). La stratégie usuelle consiste à mettre en œuvre autant de tests qu’il y a de variables et de considérer que les variables principales sont celles qui ont la « meilleure » pvalue. Une stratégie alternative pourrait consister à choisir de classer les variables non plus en fonction de leur significativité (pour un test), mais plutôt de le classer suivant leur poids dans le modèle régularisé obtenu. L’approche qui nous allons utiliser pour identifier les gènes différentiellement exprimés sont dits ‘filter’ par la méthode ebayes. Le cadre ressemble à celui de l’apprentissage supervisé, car on dispose de profils d’expression géniques pour si possible l’ensemble du génome d’un organisme, chaque puce appartenant à une classe (situation biologique particulière). L’implémentation des méthodes évoquées dans ce mémoire a été effectuée sous R
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!