End-to-end Learning-based Navigation Of Autonoumous Mobile Robot
2020
Autre
Contrôle

Université M'hamed Bougara - Boumerdes

M
Mehrab, Anis Abdeldjalil
G
Guernane, Reda (Supervisor)

Résumé: In this work we present an end-to-end learning approach that is able to perform target- oriented navigation and collision avoidance using Deep Neural Network. This approach can be defined as learning a model that maps sensory inputs, such as raw 2D-laser range findings and a target position, to navigation actions for controlling the mobile robot such as steering commands. Compared to the traditional autonomous navigation systems, which often require perception, localization, mapping, and path planning, the end-to-end learning approach offers a more efficient method. which utilize large set of expert navigation demonstrations to learn the desired navigation policy. The end-to-end learning approach has gained considerable interests in autonomous navigation in academic and industrial fields. Researches have already used different artificial neural networks to predict steering commands. However, most of the existing end-to-end methods are used for lane keeping for self-driving cars. therefore, we propose an end-to-end navigation model for mobile robots that is based on a Convolutional Neural Network (CNN). The network was trained using expert demonstration data which was generated in virtual simulation environments. The learned model was test in real time simulation and gave an acceptable result, however, it suffered when it encounters situations that requires hard maneuvers. Therefore, in order to overcome some of these difficulties, we proposed an improved model which incorporates the temporal information in the prediction process using the Long Short-Term Memory (LSTM) network. basically, this model aims to include the motion history of the robot in the steering prediction model. The improved model showed its ability to predict steering commands with high performance compared to the expert operator. However, this model imposed some limitations which will be further discussed in this remaining parts of this thesis.

Mots-clès:

autonomous navigation
end-to-end learning
approach
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:
Cognitive Tasks Behavior Of Intelligent Autonomous Mobile Robots
2011  - Articles Scientifiques Et Publications

The Proposed Neural Networks Navigation Approach
2010  - Articles Scientifiques Et Publications

Control Of Mobile Robot Navigation Under The Virtual World Matlab-gazebo
2017  - Articles Scientifiques Et Publications

Neural Path Planning For Mobile Robots
2011  - Articles Scientifiques Et Publications

World Understanding And Planning Missions
2011  - Articles Scientifiques Et Publications



footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft