Modified U-net For Cytological Medical Image Segmentation
Résumé: Deep learning–based medical image segmentation is henceforth widely established as a powerful segmentation process. This article proposes a new U-Net architecture based on a convolutional neural network for cytology image segmentation. This structure is more suitable to take into account pixel neighborhood in deconvolution. The goal is to develop an accurate segmentation method for white blood cells segmentation based on cells types features. This new proposed method yields a significant improvement compared to our previous work on the cytological medical dataset. In addition, the performance of the new architecture was also successfully tested on the Digital Retinal Image for Vessel Extraction databases benchmark. The images of this challenge are similar to our cytology image segmentation. Our approach achieved 25% relative improvement of the accuracy compared to the state-of-the-art.
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!