Reduced Kernel Random Forest Technique For Fault Detection And Classification In Grid-tied Pv Systems
2020
Articles Scientifiques Et Publications

Université M'hamed Bougara - Boumerdes

D
Dhibi, Khaled
F
Fezai, Radhia
M
Mansouri, Majdi
T
Trabelsi, Mohamed
A
Abdelmalek, Kouadri
B
Bouzara, Kais
H
Hazem, Nounou
N
Nounou, Mohamed

Résumé: The random forest (RF) classifier, which is a combination of tree predictors, is one of the most powerful classification algorithms that has been recently applied for fault detection and diagnosis (FDD) of industrial processes. However, RF is still suffering from some limitations such as the noncorrelation between variables. These limitations are due to the direct use of variables measured at nodes and therefore the only use of static information from the process data. Thus, this article proposes two enhanced RF classifiers, namely the Euclidean distance based reduced kernel RF (RK-RF ED ) and K-means clustering based reduced kernel RF (RK-RF Kmeans ), for FDD. Based on the kernel principal component analysis, the proposed classifiers consist of two main stages: feature extraction and selection, and fault classification. In the first stage, the number of observations in the training data set is reduced using two methods: the first method consists of using the Euclidean distance as dissimilarity metric so that only one measurement is kept in case of redundancy between samples. The second method aims at reducing the amount of the training data based on the K-means clustering technique. Once the characteristics of the process are extracted, the most sensitive features are selected. During the second phase, the selected features are fed to an RF classifier. An emulated grid-connected PV system is used to validate the performance of the proposed RK-RF ED and RK-RF Kmeans classifiers. The presented results confirm the high classification accuracy of the developed techniques with low computation time.

Mots-clès:

random forest
fault detection and diagnosis
principal component analysis
kernel pca
reduced k
pca
kernel principal components
number of retained kpcs
cumulative percentage of variance
kernel rf
reduced k
rf
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft
contact@theses-algerie.com