An Artificial Neural Networks Model For Predicting Patients’ Mortality Due To Covid-19 "covisurv2021"
2022
Articles Scientifiques Et Publications
ASJP
Autre

Université Ahmed Ben Bella - Oran 1

H
Haddad, Fatima Zohra
O
Ouadah, Saliha
L
Lefilef, Lina
B
Benbouras, Mohammed Amin

Résumé: Introduction. COVID-19 is, surely, the pandemic of the century with the unusual circumstances it generated. Subsequently, there has been medical and human scarcity of resources leading to the health system collapse, especially in third world countries. Objective. To support the white army in grasping the pandemic behavior, several studies have pointed to the existence of patient-related factors affecting COVID-19 patients’ mortality- risk. In the current study, Artificial Neural Network has been employed to predict COVID-19 mortality. Material and methods. In particular, the modeling phase was done using a database of 684 samples collected from Mohamed Seddik Ben Yahia hospital, Jijel. This latter contains the antecedent disease with blood biomarker data of the patients. Firstly, 18 parameters were selected in the input layer based on the literature recommendation and expert medical team consultation. Furthermore, the optimal inputs have been modeled using Artificial Neural Network and their performance was assessed through four performance measures (sensitivity, specificity, precision, and accuracy). Results. The comparative study proved the effectiveness of (18-12-2) model trained by Tansig transfer function, which displayed a higher performance in predicting COVID-19 mortality compared to other models proposed in the literature. Afterward, the proposed optimal model was utilized to develop a GUI public interface by Matlab software. Conclusion. Finally, a reliable and easy-to-use graphical interface is generated in the current study dubbed “CoviSurv2021”. This latter will be very helpful for the medical staff to select priority patients who have upper urgency to be hospitalized, prioritize patients when the hospital is overcrowded, and gain time to provide the care needed.

Mots-clès:

Covid-19
SARS-Cov-2
Corona Virus
Artificial Neural Networks
CoviSurv2021

Publié dans la revue: Nutrition & Santé

Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft