Classification Des Arythmies Ecg Avec Des Méthodes De Machine Learning Et De Deep Learning .
Résumé: Le signal électrocardiogramme (ECG) est trés largement utilisé comme l’un des outils les plus importants dans la pratique clinique a n d’évaluer l’état cardiaque des patients. Il représente les variations de l’activité électrique du coeur en fonction du temps. La classi cation des battements du signal ECG en di érents cas pathologiques est une tâche de reconnaissance très complexe et le taux élevé de mortalité dans le monde dû aux problèmes liés au dysfonctionnement de l’appareil cardiaque a poussé les chercheurs à développer des techniques de classi cation automatique des maladies cardiovasculaires pour un bon diagnostic. Dans ce mémoire, nous proposons un système pour la classi cation automatique des arythmies ECG en utilisant di érents algorithmes de Machine Learning et de Deep Learning. Pour faire la classifcation des signaux ECG on va passer par deux étapes, la première est la classi cation binaire qui dé nit si une personne est malade ou pas. Pour cela, on utilise une base de données qui contient deux classes 1 (malade), 0 (pas malade), puis si le résultat est égale à 0 la procédure est terminé, sinon on passe à la classi cation multi classe, on utilise une base de données qui contient 4 classes qui correspondent à des types de maladies cardiaques. La classi cation multi classe va nous permettre de trouver le type de la maladie.
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!