Systèmes Elliptiques Singuliers Quasi-linéaires Convectifs
Résumé: L’objectif de ce mémoire est de présenter des résultats d’existence et de régularité des solutions positives pour des syst`emes eéptiques quasi-linéaires singuliers, associés `a des termes de convections. L’approche utilisée est principalement basèe sur le théor`eme du point fixe de Schauder. Des estimations a priori sur les éventuelles solutions ainsi que sur leur gradient sont nécessaires afin d’éablir un contrˆole sur ces derni`eres. Ces estimations sont obtenues en exploitant essentiellement les propriétés spectrales de l’opérateur p-Laplacien. Cela permet de construire un ensemble fermé borné et convexe, fournissant une localisation d’un point fixe qui est en fait une solution du probl`eme considéré Dans ce travail, On présente deux résultats portant sur les syst`emes quasilin éaires convectifs et singuliers. Le premier montre l’existence de solutions positive (u, v) . C1,s 0 (O) × C1,s 0 (O), pour certain s . (0, 1) . Le deuxi`emresultat donne une estimation a priori sur le gradient permettant d’etablir un contrˆole sur la solution. Puis on consacre `a l’etude de l’existence de solutions positives et reguli`eres pour une classe de syst`eme convectifs fortement singuliers. Cela se traduit par le fait que les singularites apparaissent non seulement au niveau de la solution mais aussi dans le terme du gradient. 1
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!