Classification Des Pathologies Cardiaques A L'aide Des Signaux Ecg Avec Des Méthodes Se Deep Learning.
2022
Mémoire de Master
Informatique

Université Abderrahmane Mira - Bejaia

B
Bouhoui, Hamza
O
Ouamara, Billal
A
Amroun, Kamal

Résumé: Récemment, deep learning (DL) ou le réseau de neurone est devenu un centre de recherche dans divers domaines, y compris la médecine et les soins de santé, où l'identification précoce des perturbations de l'électrocardiogramme (ECG) est très utile dans la gestion des soins de santé. Ce document fournit une revue des méthodes DL utilisées sur le signal ECG à des fins de classification.Cette étude examine certaines méthodes DL telles que le réseau de neurones convolutifs (CNN) et LENET-5. CNN est le plus souvent observé comme la technique appropriée pour extraire les caractéristiques.Les méthodes DL ont montré une grande précision dans la classification des pathologies cardiaques, en utilisant respectivement CNN et sa précision est (99.84 %) et LENET-5 sa précision est (99.75 %).

Mots-clès:

ecg
pathologies
deep learning
cnn
lenet-5
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft