Ensemble Classification Methods For Autism Disordered Speech
Résumé: In this paper, we present the results of our investigation on Autism classifi cation by applying ensemble classi ers to disordered speech signals. The aim is to distinguish between Autism sub-classes by comparing an ensemble combining three decision methods, the sequential minimization optimization (SMO) algorithm, the random forests (RF), and the feature-subspace aggregating approach (Feating). The conducted experiments allowed a reduction of 30% of the feature space with an accuracy increase over the baseline of 8.66% in the development set and 6.62% in the test set.
Mots-clès:
Publié dans la revue: Mediterranean Journal of Modeling and Simulation
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!