Machine Learning Techniques For Turbo Decoding In Wireless Communication Systems
2024
Autre
Génie Eléctrique Et Eléctronique

École Nationale Polytechnique - Alger

B
Benkirat, Mehdi
L
Layes, Mehdi Chames Eddinne

Résumé: This study investigates machine-learning techniques aimed at enhancing turbo decoding in wireless communication. Traditional turbo decoders often struggle with challenges such as susceptibility to burst noise and high error rates at high Signal-to-Noise Ratios (SNRs). To tackle these issues, the study explores Sequence-to-Sequence attention models and Transformer architectures, adapting them for turbo decoding to potentially enhance accuracy and robustness across various channel noise conditions. The research includes foundational discussions on convolutional and turbo codes, simulations using the SOVA algorithm, reviews of neural networks in turbo decoding applications, and introduces the effective models TurboAttention and TurboTransformer. These models demonstrate promising results in terms of Bit Error Rate (BER) across a wide range of SNR values, with encouraging performance observed in hardware inference tests.

Mots-clès:

Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft