Studying The Effectiveness Of Federated Learning In The Healthcare Domain
2023
Mémoire de Master
Informatique

Université Mohamed Boudiaf - M'sila

B
Bouberra, Thameur
S
Seghiri, Yassin
R
Reporter: Amraoui, Noureddine

Résumé: Federated Learning (FL) has emerged as a promising approach for training Machine Learning (ML) models in decentralized settings, such as Smart Healthcare Systems (SHSs). Adoption of FL in SHSs provides many advantages especially the preservation of patient’s privacy. This project aims to investigate the effectiveness of FL in the context of SHSs by comparing it with the traditional data-centralized approach. Specifically, four FL strategies are implemented using the Flower framework, with each strategy trained on four different types of datasets: brain tumor, pneumonia, Alzheimer's disease, and COVID-19. The performance of these FL strategies is then compared to that of a data-centralized model trained on the same datasets. Our obtained experimental results reveal that the accuracy of the FL models is in general less than the data-centralized model for all four strategies. Such disparity in accuracy is explained by the challenges associated with decentralized FL learning in SHS settings. Nevertheless, such a small extent of difference can be tolerated considering the benefits of FL brought to SHSs. Thus, we may conclude that there should be a trade-off between high accuracy and FL advantages.

Mots-clès:

Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft
contact@theses-algerie.com