Privacy-preserving Techniques In Fl.
2023
Mémoire de Master
Informatique

Université Kasdi Merbah - Ouergla

B
Boukhamla, Akram Zine Eddine
C
Chetti, Rayan

Résumé: Federated Learning (FL) has the potential to train models on decentralized data while maintaining data privacy. However, trust and security are major concerns in federated learning architecture due to the possibility of malicious contributors. This essay aims to improve the longevity of the federated learning system by addressing trust-based mitigation. The study explores different types of trust, including contributor trustworthiness, model trustworthiness and data bias. In addition, it examines trust-based mitigation techniques for the FL system, including reputation-based modelling, secure aggregation protocols and privacy-preserving techniques. These mechanisms recognise and deal with the non-trusted participants, ensuring the integrity of the FL system. The study also investigates the effects of trust-based mitigation techniques on the performance and efficiency of FL systems, balancing security measures and computational load. The approach is tested through experiments and simulations using real-world datasets and scenarios, estimating its performance in terms of model accuracy, convergence rate, communication efficiency and resemblance to application scenarios against adversarial attacks. This essay contributes to the field of FL by addressing trust challenges and providing effective mitigation strategies, paving the way for a more secure and reliable FL system in sensitive and private domains such as healthcare, finance and smart cities.

Mots-clès:

Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft