La Reconnaissance Du Langage Offensant Dans Le Contenu Arabe En Ligne
2024
Mémoire de Master
Informatique

Université Mohamed El Bachir El Ibrahimi - Bordj Bou Arréridj

B
Boussouf, Silia

Résumé: In this study, we addressed the issue of detecting offensive language on social media in Arabic, a language often underrepresented in natural language processing (NLP) research. By leveraging a recently published public dataset, we trained several machine learning and deep learning models to accomplish this task. The machine learning models used include Naive Bayes, SVM, Decision Tree, and Random Forest. In parallel, we explored deep learning architectures such as convolutional neural networks (CNN) and recurrent neural networks (RNN). Our experiments yielded remarkable results, demonstrating the effectiveness of these approaches in detecting offensive language in Arabic. To enhance user experience and facilitate the application of our work, we also developed a comprehensive user interface in Python. This interface allows for intuitive use of our detection models, making the technology accessible to a non-technical audience. The results obtained are promising and pave the way for future improvements, particularly through the optimization of current models and the exploration of new machine learning and deep learning techniques.

Mots-clès:

Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft