Deep Learning Models For Intracranial Hemorrhage Recognition: A Comparative Study
2022
Autre
Publications Internationales

Université M'hamed Bougara - Boumerdes

A
Ammar, Mohammed
L
Lamri, Mohamed Amine
M
Mahmoud, Saïd
L
Laid, Amel

Résumé: Every day, a large number of people with brain injury are received in the emergency rooms. Due to the large number of slices analyzed by the doctors for each patient and to accelerate the diagnosis, the development of a precise computer-aided diagnosis system becomes very recommended. The aim of our work is developing a tool to help radiologists in the detection of intracranial hemorrhage (ICH) and its five (05) subtypes in computed tomography (CT) images. Five deep learning models are tested: ResNet50, VGG16, Xception, InceptionV3 and InceptionResNetV2. Before training these models, preprocessing operations are performed like normalization and windowing. The experiments show that VGG-16 architecture provides the best performances. The model achieves an accuracy of 96%.

Mots-clès:

intracranial hemorrhage
ct
detection
classification
deep learning
vgg-16
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft