Caractérisation Des Espaces De Besov Homogènes Et Applications
2019
Thèse de Doctorat
Mathématiques

Université Mohamed Boudiaf - M'sila

M
Mahamed, Benallia

Résumé: Comme les espaces de Besov homogènes et Lizorkin-Triebel homogènes sont définis à des polynômes près, leurs éléments alors sont des classes d’équivalences dans les espaces des distributions modulo les polynômes. Les espaces de Besov homogènes et Lizorkin-Triebel homogènes possèdent alors des versions d’espaces fonctionnels, ce sont leurs versions réalisées développées par des travaux de G. Bourdaud et autres. Dans cette thèse nous intéressons aux espaces réalisés de Besov et de Lizorkin-Triebel, par l'étude de certaines propriétés, en particuliers:  la convolution,  estimations de type de Gagliardo-Nirenberg,  caractérisation par des fonctions données.

Mots-clès:

espaces de besov
espaces de lizorkin-triebel
espaces homogènes
réalisa
tions
convolutions
inégalités de gagliardo-nirenberg
méthode de représentation de nikol’skij
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".
Logo Université


Documents et articles similaires:


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft