Online Monitoring Scheme Using Pca Through Kullback-leibler Divergence Analysis Technique For Tennessee Eastman Process Fault Detection
Résumé: This dissertation develops new statistics based on Kullback-Leibler (KL) divergence to monitor multivariate industrial systems. These statistics are built through Principal Component Analysis (PCA) and measure the difference between online estimated density function and offline reference density function. For processes with scores following multivariate Gaussian distribution, it has been proved that the sensitivity to faults was better captured by measuring the difference in the density function using Kullback-Leibler divergence than the existing statistics for some other Multivariate Statistical Process Monitoring methods. The proposed method was applied to plant-wide Tennessee Eastman process and the results show its superiority over other charts with higher sensitivity and robustness.
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!