Network Intrusion Detection System Using Deep Learning
Résumé: La détection des intrusions dans les réseaux joue un rôle crucial dans la garantie de la cybersécurité et la protection des organisations contre les dommages potentiels. Cette recherche se concentre sur l'amélioration de la sécurité des réseaux informatiques en détectant et en atténuant efficacement les intrusions, avec un accent particulier sur la lutte contre les attaques par déni de service distribué (DDoS). Les techniques d'apprentissage profond, notamment les réseaux neuronaux profonds (DNN), les réseaux neuronaux convolutifs (CNN) et les réseaux neuronaux récurrents (RNN), sont explorées pour développer un système de détection d'intrusion (IDS). La performance de ces modèles est évaluée en utilisant l'ensemble de données CICDDoS2019 comme référence pour la détection des attaques DDoS en réseau. Nous évaluons rigoureusement les modèles d'apprentissage profond proposés, démontrant leur performance supérieure dans la détection précise des intrusions de réseau avec une précision, un rappel et un score F1 élevés. Cette recherche démontre l'efficacité des DNN avec 99.76% de précision dans l'amélioration des systèmes de détection d'intrusion, permettant aux organisations de détecter et de répondre aux intrusions de réseau, renforçant ainsi les défenses de cybersécurité.
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!