Fault Prognostics Of Rolling Element Bearing Based On Feature Extraction And Supervised Machine Learning: Application To Shaft Wind Turbine Gearbox Using Vibration Signal
2020
Articles Scientifiques Et Publications

Université M'hamed Bougara - Boumerdes

G
Gougam, Fawzi
C
Chemseddine, Rahmoune
D
Djamel, Benazzouz
B
Benaggoune, Khaled
Z
Zerhouni, Noureddine

Résumé: Renewable energies offer new solutions to an ever-increasing energy demand. Wind energy is one of the main sources of electricity production, which uses winds to be converted to electrical energy with lower cost and environment saving. The major failures of a wind turbine occur in the bearings of high-speed shafts. This paper proposes the use of optimized machine learning to predict the Remaining Useful Life (RUL) of bearing based on vibration data and features extraction. Significant features are extracted from filtered band-pass of the squared raw signal where the health indicators are automatically selected using relief technique. Optimized Adaptive Neuro Fuzzy Inference System (ANFIS) by Partical Swarm Optimization (PSO) is used to model the non linear degradation of the extracted indicators. The proposed approach is applied on experimental setup of wind turbine where the results show its effectiveness for RUL estimation

Mots-clès:

faults prognosis
feature extraction
classical features
bearing faults
remaining useful life
artificial intelligence
machine learning
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Aucun fichier associé
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft
contact@theses-algerie.com