Differential Inclusions Governed By Maximal Monotone Operators Of Fractional Order
Résumé: Cette thèse est consacrée à l'étude des inclusions différentielles d’ordre fractionnaire gouvernées par des opérateurs monotones maximaux. Dans une première partie, nous introduisons les notions fondamentales relatives aux applications multivoques, aux opérateurs monotones maximaux en espace de Hilbert, ainsi qu'aux inclusions différentielles classiques. Nous présentons ensuite les principaux outils du calcul fractionnaire, notamment les intégrales et dérivées de Riemann-Liouville, ainsi que certaines fonctions spéciales telles que les fonctions d'Euler et de Mittag-Leffler. La seconde partie est dédiée à l’analyse de l’existence et de l’unicité des solutions pour des inclusions différentielles fractionnaires, régies d’une part par des opérateurs inverse fortement monotones, et d’autre part par des opérateurs monotones maximaux, avec une étude des cas où interviennent des perturbations lipschitziennes. Enfin, nous illustrons l’intérêt pratique de ces résultats à travers des applications à la modélisation de matériaux viscoélastiques et de phénomènes de diffusion anormale, mettant en évidence la pertinence du calcul fractionnaire pour décrire des processus à mémoire et à effets héréditaires.
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!