Asymptotic Normality Of A Kernel Conditional Quantile Estimator Under Strong Mixing Hypothesis And Left-truncation
Résumé: We consider the estimation of the conditional quantile when the interest variable is subject to left truncation. Under regularity conditions, it is shown that the kernel estimate of the conditional quantile is asymptotically normally distributed, when the data exhibit some kind of dependence. We use asymptotic normality to construct confidence bands for predictors based on the kernel estimate of the conditional median.DOI:10.1080/03610926.2010.489171 Link http://www.tandfonline.com/doi/abs/10.1080/03610926.2010.489171
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!