Taylor Collocation Method For A System Of Nonlinear Volterra Delay Integro-differential Equations With Application To Covid-19 Epidemic
Résumé: The present paper deals with the numerical solution for a general form of a system of nonlinear Volterra delay integro-differential equations (VDIDEs). The main purpose of this work is to provide a current numerical method based on the use of continuous collocation Taylor polynomials for the numerical solution of nonlinear VDIDEs systems. It is shown that this method is convergent. Numerical results will be presented to prove the validity and effectiveness of this convergent algorithm. We apply two models to the COVID-19 epidemic in China and one for the Predator-Prey model in mathematical ecology.
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!