Prédiction Des Tumeurs Cérébrales Dans Les Images Irm Par L’apprentissage Profond
2024
Mémoire de Master
Informatique

Université Mohamed El Bachir El Ibrahimi - Bordj Bou Arréridj

M
MERDJI, Saida
R
REBIAI, Soria

Résumé: TThe accurate diagnosis of contemporary diseases heavily relies on the processing of medical images. This study introduces an interesting approach for automated detection of brain tumors from magnetic resonance imaging (MRI) using the deep learning model ResNet50. This model, renowned for its ability to extract complex features from images, is deployed to analyze brain MRI images and accurately identify the presence of tumors. The data used in this study include MRI images containing tumors. We compared our approach to other methods using criteria such as precision, recall, and F1 score. The proposed model, ResNet50, achieved a detection accuracy of 98%, demonstrating its effectiveness in detecting brain tumors from MRI images. These results highlight the potential of the ResNet50 model to improve early and accurate detection of brain tumors in images.

Mots-clès:

Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft