Ricci Solitons Généralisés Et Quelques Structures
Résumé: Un flot de Ricci sur une variété M est une solution de l'équation d'évolution introduite par Hamilton g'(t) = -2Ric, g(0) = g, où g est une métrique Riemannienne sur M. Une solution du flot de Ricci g(t) sur une variété M est qualifiée de point fixe ou encore de Soliton de Ricci s'il existe des réels a(t) est une famille de difféomorphismes f(t) de la variété M tels que g(t) = a(t)f(t)*g(0). Dans cette thèse, on cherche à établir les conditions nécessaires et suffisantes pour qu'une application soit harmonique entre deux Solitons de Ricci, puis de généraliser la notion de Soliton de Ricci sur les variétés de Sasaki
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!