Predictive Maintenance: State Of The Art Based On Machine Learning Methods
Résumé: This study explores the evolving role of machine learning in revolutionizing predictive maintenance (PdM) within Industry 4.0, emphasizing the transition from traditional methods to advanced, data-driven approaches, particularly highlighting deep learning's transformative impact. It examines key technologies such as IoT (Internet of Things) sensors for real-time vibration analysis and addresses the efficacy of data-driven models, stressing the importance of managing data quality. The study also explores state-of-the-art approaches that integrate both single-model and multi-model frameworks, combining machine learning (ML) with physics-based models and statistical techniques. This integrated approach enhances anomaly detection, fault classification, and estimation of remaining useful life (RUL), contributing to a robust PdM framework designed for Industry 4.0 environments. Keywords: Predictive maintenance, industry 4.0, machine learning, single model, multimodel, data-driven, IoT, vibration, RUL, anomaly detection, classification.
Mots-clès:
Nos services universitaires et académiques
Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).
Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!