Différents Concepts De Fermabilité Des Opérateurs Linéaires Sur Un Espace De Hilbert. Stabilité Et Complétion
2016
Thèse de Doctorat
Mathématiques

Université Abou Bekr Belkaid - Tlemcen

M
Messirdi, Sanaa

Résumé: Dans cette thèse on s’intéressé aux différents concepts de fermabilité des opérateurs linéaires. On introduit une notion nouvelle d’opérateurs linéaires sur les espaces de Hilbert et les espaces de Banach, appelés opérateurs presque fermables obtenus par des extensions presque fermées. Cette classe est stable par l’addition, la composition, l’inversion, la restriction, les limites et les intégrales, sur laquelle on introduit une topologie de Hausdorff localement convexe strictement plus forte que celle induite par la métrique du gap. On montre aussi que les problèmes de Cauchy abstraits sont en particulier rigoureusement formulés dans la classe des opérateurs presque fermables.

Mots-clès:

extensions presque fermées
opérateurs presque fermables
somme
produit
limites
intégrales
topologie de hausdorff localement convexe
problèmes de cauchy abstraits pour des opérateurs presque fermables
Nos services universitaires et académiques

Thèses-Algérie vous propose ses divers services d’édition: mise en page, révision, correction, traduction, analyse du plagiat, ainsi que la réalisation des supports graphiques et de présentation (Slideshows).

Obtenez dès à présent et en toute facilité votre devis gratuit et une estimation de la durée de réalisation et bénéficiez d'une qualité de travail irréprochable et d'un temps de livraison imbattable!

Comment ça marche?
Nouveau
Si le fichier est volumineux, l'affichage peut échouer. Vous pouvez obtenir le fichier directement en cliquant sur le bouton "Télécharger".


footer.description

Le Moteur de recherche des thèses, mémoires et rapports soutenus en Algérie

Doctorat - Magister - Master - Ingéniorat - Licence - PFE - Articles - Rapports


©2025 Thèses-Algérie - Tous Droits Réservés
Powered by Abysoft